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The importance of alternative splicing in the regulation

of diverse biological processes is reflected in the
growing list of human diseases associated with known

or suspected splicing defects. It is becoming evident

that alternative splicing plays a particularly important
role in neurologic disease, which is perhaps not sur-

prising given the important role splicing plays in gen-
erating complexity and function in the brain. This

review considers the evidence that defects in regula-
tion of splicing may underlie many types of human

neurologic diseases.

Thirty years have passed since the unexpected discov-
ery that the protein-coding (exonic) sequences of genes
are separated by relatively large noncoding (intronic) se-
quences. Pre-mRNA splicing is the process in which
these long precursor (pre-) mRNAs are processed into
the mature forms found in the cytoplasm via the precise
joining of exonic sequences and the removal of introns
that can be hundreds of kilobases long (Figure 1). Splic-
ing is accomplished by a large macromolecular complex
termed the spliceosome, which consists of numerous
proteins and small RNAs (snRNPs; Rappsilber et al.,
2002; Zhou et al., 2002). The spliceosome recognizes
specific sequences in pre-mRNA to define intron-exon
boundaries and to facilitate splicing (Figure 1). The activ-
ity of the spliceosome can be regulated by multiple
splicing activator and repressor proteins that are bound
to enhancer and silencer elements, respectively, in the
pre-mRNA (reviewed in Black, 2003).

Alternative splicing is the process by which different
combinations of exons are included in the mature
mRNA, thus allowing a single gene to encode multiple
protein isoforms with altered or potentially antagonistic
properties. Remarkably, some genes can yield hun-
dreds and potentially thousands of unique isoforms.
For example, due to the large number of alternative
exons present in the three neurexin genes, alternative
splicing can generate nearly 3000 unique mRNAs (Miss-
ler and Sudhof, 1998) encoding a potentially huge array
of synaptic molecules. An emerging theme in molecular
neurobiology is that alternative splicing may generate
cell-specific combinations of protein isoforms that de-
fine the functional properties of the cell and underlie
complex processes in the nervous system such as syn-
aptic adhesion and plasticity (Boucard et al., 2005; Ule
and Darnell, 2006). Here we review evidence that splic-
ing misregulation plays a crucial role in the development
of neurologic diseases.

*Correspondence: darnelr@rockefeller.edu
Splicing in the Brain
Alternative splicing is highly abundant in brain relative to
other tissues (Blencowe, 2006; Yeo et al., 2004), where it
can influence neurophysiology through spatial and tem-
poral alterations in proteins that comprise ion channels
and membrane-bound receptors and are involved in
neurotransmitter storage and release (Grabowski and
Black, 2001; Lipscombe, 2005; Stamm et al., 2005). In
the nervous system, regulated alternative splicing al-
lows the cell to ‘‘fine-tune’’ its protein composition in
order to respond and adapt to different stimuli. Activity-
induced changes in the alternative splicing of many pre-
mRNAs have been described, including those that
encode clathrin light chain B, c-src, NMDA NR1, PMCA,
and AChE (Daoud et al., 1999; Lipscombe, 2005; Pick
et al., 2004; Strehler and Zacharias, 2001; Vallano
et al., 1999; Xie and Black, 2001). Alternative splicing
of NMDAR1 pre-mRNAs represents an excellent exam-
ple of how the regulated production of different protein
isoforms can influence receptor properties and conse-
quently cell physiology (Bradley et al., 2006; Ehlers
et al., 1996; Mu et al., 2003; Xie and Black, 2001).

Alternative splicing patterns are dependent on the net
result of multiple interactions between RNA binding pro-
teins bound to regulatory elements in the pre-mRNAs
(Black, 2003). As a result, differences in the regulation
of splicing activator and repressor proteins may be
able to affect the alternative splicing of different pre-
mRNAs that share common regulatory elements or
‘‘splice codes’’ (Goren et al., 2006; Han et al., 2005; Ule
and Darnell, 2006; Ule et al., 2006; Wang et al., 2004).
Such regulation through combinatorial control could al-
low alternative splicing patterns of multiple pre-mRNAs
to be altered in response to changes in the level or activ-
ity of a single splicing factor, a mechanism believed to
underlie the establishment and maintenance of tissue-
and developmental-stage-specific gene expression
pathways (Jensen et al., 2000; Ule et al., 2003, 2005;
Xu et al., 2005). Consequently, disrupting the function
of a single RNA binding protein can affect many alterna-
tively spliced transcripts, a phenomenon that is increas-
ingly recognized as having a role in human diseases. In
this review, we present examples of the different types
of neurologic diseases with links to alternative splicing
(Table 1). The reader is directed to other excellent recent
reviews that discuss the roles of RNA binding proteins
and alternative splicing in human diseases in general
(Caceres and Kornblihtt, 2002; Cartegni et al., 2002;
Faustino and Cooper, 2003).

Neurologic Diseases with Primary Splicing Defects:

cis-Acting Splicing Disorders

In one set of neurologic diseases involving splicing de-
fects, mutations within the disease-causing gene alter
sequences important for the proper splicing of the re-
sulting pre-mRNA (Figure 2), and we refer to these as
cis-acting splicing disorders. It is estimated that at least
15% (Krawczak et al., 1992), and perhaps as many as
50% (see ‘‘The Phakomatoses,’’ below), of point muta-
tions that result in human disease cause cis-acting
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Figure 1. A Simplified Overview of Pre-mRNA

Splicing

(A) Splicing of a pre-mRNA containing three

exons (solid boxes) is shown as dependent

on the presence of specific cis elements in

the transcript. These elements include the

GU and AG dinucleotides that define the 50

and 30SS, respectively; a branch point se-

quence (open circle); a pyrimidine-rich se-

quence (hatched box) located upstream of

the 30SS; and an auxiliary splicing regulatory

element (‘‘+’’ sign). Splicing of an intron oc-

curs in two catalytic steps. In the first cata-

lytic step of the splicing reaction, cleavage

at the 50SS of intron 1 leads to the formation

of a branched (lariat) intermediate. In the sec-

ond catalytic step, the branched intermediate

is removed from the transcript by cleavage at

the 30SS, and the first two exons are ligated

together.

(B) cis elements in pre-mRNA are recognized

by components of the spliceosome. These

include the snRNPs (U1, U2, U4, U5, and

U6) and additional proteins, including the

U2-auxilliary factor (U2AF), the branch point binding protein SF1, and in this example, an SRF that functions to promote the association of

U2AF with the 30SS of intron 1. Interactions between factors bound at the different splice sites help to define intron-exon boundaries and to

initiate the removal of the first intron.
defects in pre-mRNA splicing. These mutations may
weaken or strengthen splicing enhancer and silencer
elements, as well as create or destroy splice sites. As
a result, the splicing of constitutive and alternative
exons is altered, cryptic splice sites activated, or in-
tronic sequences retained in the mature mRNA. Specific
examples of cis-acting mutations and their conse-
quences in neurologic disease follow.
The Phakomatoses

Ataxia-telangiectasia and neurofibromatosis are two of
a group of autosomal dominant disorders (the phako-
matoses) associated with neurologic disease and a pre-
disposition for malignancies; both disorders have been
recently found to be associated in some patients with
mutations altering pre-mRNA splicing. For example,
a 4 base-pair deletion in intron 20 of the ataxia-tele-
ngiectasia mutated (ATM) gene can result in the activa-
tion of a cryptic exon and is directly responsible for
ataxia-telengiectasia in an affected individual (Pagani
et al., 2002). More generally, an unusually high number
of ataxia-telengiectasia and neurofibromatosis type 1
patients (w50%) have mutations that affect pre-mRNA
splicing (Ars et al., 2000; Teraoka et al., 1999). As em-
phasized by Cartegni et al. (2002), these studies high-
light the importance of comparing DNA and the resulting
mRNA sequences in order to determine whether silent or
missense mutations might also change alternative splic-
ing patterns. In ataxia-telengiectasia and neurofibroma-
tosis type 1, such careful sequencing of DNA and mRNA
from patients has expanded the list of disease-causing
mutations due to aberrant pre-mRNA splicing. Contin-
ued efforts to define auxiliary elements that function as
enhancers and suppressors of exon splicing will un-
doubtedly lead to an improved ability to predict which
disease-causing mutations affect pre-mRNA splicing.
Frontotemporal Dementia with Parkinsonism Linked

to Chromosome 17, or FTDP-17
The need to properly control the relative levels of protein
isoforms generated by splicing is underscored by the
disorder termed frontotemporal dementia with Parkin-
sonism linked to chromosome 17 (FTDP-17). FTDP-17
is an autosomal dominant disorder in which cis-acting
mutations result in splicing defects in the transcript en-
coding MAPT, the microtubule-associated protein tau
that is enriched in axons of mature and growing neu-
rons. MAPT gives rise to multiple transcripts that are al-
ternatively spliced and regulated in a developmental and
tissue-specific manner. The association of tau with mi-
crotubules is dependent on C-terminal repetitive micro-
tubule binding domains encoded by exons 9 through 12.
The number of repeat domains (R) encoded in the MAPT
transcript, either 3 or 4, is developmentally regulated
through the exclusion or inclusion, respectively, of exon
10, and can influence the efficiency with which tau
promotes microtubule assembly (Buee et al., 2000). Per-
turbation of the ratio of 4R- to 3R-containing protein iso-
forms can lead to the formation of neurofibrillary tangles
(NFTs) and neurodegeneration (Lee et al., 2001). Several
mutations clustered around exon 10 which lead to in-
creased levels of exon 10-containing isoforms in hu-
mans have been characterized. These include missense
mutations that are presumed to create or disrupt a splic-
ing enhancer or silencer, respectively (D’Souza et al.,
1999; Hasegawa et al., 1999; Jiang et al., 2003), as well
as mutations that disrupt the formation of an RNA
stem-loop structure at the 50 splice site (SS) of exon
10, which normally functions to restrict spliceosome as-
sembly (Grover et al., 1999). Such structural causes of
altered splicing are difficult to document and may be
more widespread than currently appreciated. Finally,
while the splicing of MAPT exon 10 has been most ex-
tensively studied for its role in the pathology in FTDP-
17, altered splicing of MAPT exons 2, 3, and 6 have
also been observed and implicated in the pathology of
other diseases, including gliopathy, spinal cord degen-
eration, Alzheimer’s disease, and myotonic dystrophy
(DM; see below) (Andreadis, 2005; Glatz et al., 2006;
Leroy et al., 2006; Sergeant et al., 2001).
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Table 1. Neurologic Disorders with Links to Alternative Splicing

Disease Link to alternative splicing

Ataxia-telengiectasia Point mutations within the ATM gene cause aberrant splicing of ATM transcripts

Fascioscapulohumoral dystrophy (FSHD) Loss of FRG1 leads to altered splicing of many pre-mRNAs

Fragile-X-associated tremor/ataxia syndrome

(FXTAS)

Premutation CGG repeat expansions in the FMR1 gene result in the sequestration of

RNA-binding splicing factors

Frontotemporal dementia with Parkinsonism

linked to chromosome 17 (FTDP-17)

Point mutations within the MAPT gene result in altered levels of MAPT transcripts

containing the alternatively spliced exon 10

Duschenne muscular dystrophy; Becker’s

muscular dystrophy

Altered splicing of dystrophin transcripts due to deletions and mutations in the

dystrophin gene

Myotonic dystrophy (DM)

DM1 CUG expansion in the 3’UTR of DMPK results in the misregulation of the MBNL splicing

factor and consequent missplicing of MBNL target pre-mRNAs

DM2 CCUG expansion in ZNF9 intron leading to misregulation of the CUG-BP1 splicing factor

and missplicing of CUG-BP1 target pre-mRNAs

Neurofibromatosis type 1 (NF1) Numerous mutations in the NF1 gene, including mutations that result in aberrant splicing

Paraneoplastic neurologic disorders (PND)

Paraneoplastic opsoclonus-myoclonus-ataxia

(POMA)

Autoimmune antibodies recognize the Nova family of neuron-specific RNA-binding splicing

factors; Nova knockout mice phenocopy POMA

Hu syndrome (PEM/SN; paraneoplastic

encephalomyelitis / sensory neuronopathy)

Autoimmune antibodies recognize the Hu family of RNA-binding factors related to the

Drosophila splicing factor ELAV

Prader Willi syndrome Loss of a splicing regulatory snoRNA that is complementary to a splicing silencer element

implicated in regulating the alternative splicing of serotonin receptor 5-HT2cR transcripts

Psychiatric disorders Accumulation of aberrantly spliced transcripts in schizophrenic patients

Retinitis pigmentosa Mutation of genes encoding U snRNP-associated proteins

Rett syndrome Mutation of the gene encoding MeCP2, which interacts with the YB-1 RNA binding protein;

mouse model of Rett syndrome shows aberrant pre-mRNA splicing

Spinal muscular atrophy Deletion/mutation of the SMN1 gene, and the loss of a splicing regulatory element in

SMN2 results in insufficient levels of SMN, which is involved in snRNP biogenesis

Spinocerebellar ataxias

SCA2, SCA8, SCA10, and SCA12 Possible RNA gain of function due to triplet repeat expansions; direct and indirect

interactions with RNA-binding splicing factors

See text for details and references.
Spinal Muscular Atrophy
Spinal muscular atrophy (SMA) is a common autosomal
recessive neurodegenerative disorder, characterized by
the progressive loss of motor neurons in the anterior
horns of the spinal cord (Monani, 2005). SMA results
from insufficient levels of the survival of motor neuron
(SMN) protein, which is encoded by two nearly identical
genes, SMN1 and SMN2. In most affected individuals,
the disease mutation is in the SMN1 gene, which is ab-
sent or mutated (Lefebvre et al., 1995). SMN2, while
nearly identical to SMN1, is nonetheless unable to com-
pensate for this loss due to a splicing problem; a transla-
tionally silent C to T nucleotide substitution is present in
the normal SMN2 gene that disrupts an important splic-
ing regulatory element in exon 7 (Cartegni et al., 2006;
Kashima and Manley, 2003). As a result, only w20% of
SMN2 transcripts contain exon 7 and encode a func-
tional SMN protein, while the predominant exon 7-skip-
ped isoform naturally produced from SMN2 is nonfunc-
tional. Thus, SMA is an unusual disorder in which a
loss-of-function mutation in one gene (SMN1) unmasks
a naturally occurring cis-acting splicing defect in a sec-
ond gene (SMN2), leading to the insufficient production
of a critical gene product.

A second link between SMA and pre-mRNA splicing
has emerged from studies on the biology of the SMN
protein itself, and it suggests that SMA may also turn
out to be a trans-acting splicing disorder. SMN interacts
with a complex of several gemin proteins to form a com-
plex that is critical for the association of Sm proteins
with snRNA to form snRNPs, which themselves form
part of the constitutive machinery necessary for pre-
mRNA splicing (Carissimi et al., 2006; Gubitz et al.,
2004). SMN facilitates the assembly of spliceosomal
snRNPs prior to their import into the nucleus, where
splicing occurs, and can enhance pre-mRNA splicing
in vitro (Pellizzoni et al., 1998). Although these observa-
tions suggest that defects in SMN production might lead
to widespread alterations in pre-mRNA splicing, to date
no changes in pre-mRNA splicing have been observed
in mouse models of SMA. Interestingly, mutations that
affect the general splicing machinery have also been de-
scribed in a second neurological disorder. In autosomal
dominant retinitis pigmentosa (RP), degeneration of
photoreceptor cells results from mutations that affect
the activity of some U snRNP-associated factors (Cha-
karova et al., 2002; McKie et al., 2001; Vithana et al.,
2001), consistent with the suggestion made in SMA
that defects in the basal splicing machinery may lead
to specific neurologic disorders.

It remains unclear why a deficiency in such ubiqui-
tously expressed proteins would lead to selective de-
generation of spinal cord motor neurons or photorecep-
tor cells. Such proteins may have an essential function
that is unique to specific cells or be required at a level
in a subset of neurons not accommodated by redundant
proteins (such as SMN2). One model of SMA, based
on knockdown of SMN expression in animal models
(Monani, 2005) and in particular rescue by coinjection
of snRNPs, proposes that motor neurons have a particu-
lar sensitivity to snRNP levels (Winkler et al., 2005). A
related model proposes that the cell-specific degenera-
tion in SMA may be due to cell type-specific differences
in the relative amounts of splicing silencer and enhancer
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Figure 2. cis and trans Mutations Can Disrupt

Levels of Alternatively Spliced mRNAs

(A) Splicing of an alternative exon (light blue)

is regulated by the association of SRFs with

splicing regulatory elements (‘‘+’’ and ‘‘2’’)

in the pre-mRNA. SRFs act either to promote

(green circle) or repress (red stop sign) inclu-

sion of the alternative exon in the mature

mRNA. In this example, the ratio of positive

and negative SRFs leads to inclusion of the

alternate exon in 50% of the mature mRNA

transcripts.

(B) In this example, a cis-acting mutation

(‘‘X’’) in the pre-mRNA prevents the positive-

acting SRF (green) from interacting with the

pre-mRNA. This results in a relative excess

of negative-acting SRFs (red) binding to the

pre-mRNA, leading to an increase in spliced

mRNAs that have skipped the alternate exon.

(C) A mutation in one gene functions in trans

to cause aberrant splicing of mRNA from

a second gene. In this example, a repeat ex-

pansion mutation in one transcript seques-

ters a negative-acting SRF. This SRF is then

unavailable to negatively regulate splicing of

an alternative exon present in a second pre-

mRNA. This leads to an increase in spliced

mRNAs that contain the alternate exon.
proteins that determine the efficiency of SMN2 exon 7
splicing (Cartegni et al., 2006). It is notable that disease
severity in SMA patients (Taylor et al., 1998) and SMA
mice (Hsieh-Li et al., 2000; Monani et al., 2000) can be
modified by SMN2 copy number. Finally, it remains pos-
sible that some transcripts may be more sensitive to
snRNP levels, particularly in motor neurons, and that
failure to properly splice such transcripts might contrib-
ute to the disease phenotype (Monani, 2005). Alterna-
tively, other proposed functions for SMN, including
a role in axonal transport (Eggert et al., 2006), may play
a role in SMA.
Muscular Dystrophy

Duchenne muscular dystrophy (DMD) is caused by mu-
tations in the dystrophin gene. Mutations that induce
inappropriate alternative splicing (i.e. exon skipping)
can cause disease, and the mechanism has been well
worked out in some cases in which mutations disrupt
splicing enhancers (Ahn and Kunkel, 1993). Aberrant
splicing of the dystrophin pre-mRNAs that preserve
the open reading frame are better tolerated and may re-
sult in a milder DMD variant, Becker’s muscular dystro-
phy (BMD). In some instances, detailed analyses of mu-
tations have revealed splicing defects that may have
otherwise been overlooked, as described for the phako-
matoses. For example, a cis-acting nonsense mutation
in the dystrophin gene also causes exon 31 skipping
by creating an exonic splicing silencer by creating a spe-
cific binding site (UAGACA) for the hnRNP A1 protein
(Disset et al., 2006). Interestingly, intronic mutations
that result in aberrant splicing due to the activation of
cryptic splice sites or pseudoexons have also been de-
scribed (Beroud et al., 2004; Tuffery-Giraud et al., 2003).

Neurologic Diseases where RNA Binding Proteins
Are Implicated: trans-Acting Splicing Disorders

In a second set of neurologic diseases associated with
splicing defects, which we term trans-acting splicing
disorders, aberrant splicing of pre-mRNAs occurs indi-
rectly, from dysfunction in another gene which leads to
a secondary splicing defect (Figure 2). One set of disor-
ders are those in which splicing regulatory factors
(SRFs) themselves are directly implicated in the disease
process. In a second set of diseases, repeat expansion
mutations are present in RNAs that are believed to act as
‘‘dominant-negative sinks’’ for SRFs. In these disorders,
RNA binding proteins appear to be vulnerable to being
bound by stretches of repeat sequences that, when am-
plified by disease-causing mutations, lead to amplifica-
tion of SRF binding sites and SRF sequestration, and
consequently to altered splicing of pre-mRNAs that
would normally be regulated by those SRFs (Ranum
and Cooper, 2006; Ranum and Day, 2004b).
Indirect Targeting of RNA Binding Proteins
in Neurologic Diseases

Myotonic Dystrophy. Myotonic dystrophy is a multisys-
temic disorder representing a common form of muscular
dystrophy in adults. Two types of DM have been identi-
fied: DM1, which is caused by a CUG expansion in the 30

untranslated region (30 UTR) of the DM protein kinase
gene (DMPK); and DM2, which is caused by a CCUG ex-
pansion located in intron 1 of the zinc finger protein 9
(ZNF9) gene (Ranum and Day, 2004a). In both DM1 and
DM2, misregulation of the levels of proteins involved in
pre-mRNA splicing is believed to lead to the disease
phenotype, which for DM1, includes cognitive impair-
ment, personality and behavior abnormalities, abnormal
white matter that is indicative of degenerative changes,
and the presence of NFTs in the neocortex and subcor-
tical nuclei (Ranum and Day, 2004b). Numerous bio-
chemical and genetic studies with mouse models have
demonstrated that the CUG and CCUG repeat expan-
sions result in the sequestration and upregulation of
the MBNL and CUG-BP1 proteins, respectively, which
function to modulate the alternative splicing of tran-
scripts that are misregulated in DM striated muscle
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and brain tissues (Kanadia et al., 2006; Ranum and Coo-
per, 2006). Interestingly, alterations in the splicing of
amyloid precursor protein pre-mRNA, NMDAR1 exon
5, and MAPT exons 2, 6, and 10 have been reported in
DM1, and are suspected to underlie various CNS abnor-
malities in DM1, including memory impairment (Jiang
et al., 2004; Leroy et al., 2006).

Fragile-X-Associated Tremor/Ataxia Syndrome, or
FXTAS. Mutations in the FMR1 locus were originally
linked to mental retardation (the fragile-X syndrome)
and found to be due to long triplet repeat expansions
(CGG) in the 50 UTR, causing hypermethylation, tran-
scriptional silencing, and loss of function. Fragile-
X-associated tremor/ataxia syndrome (FXTAS) is a
more recently described late-onset neurologic disorder
caused by ‘‘premutation’’ expansions of 55–200 CGG
repeats, and is associated with cognitive decline, gait
difficulty, intention tremor, and white matter changes
(Hagerman and Hagerman, 2004; Oostra and Willemsen,
2003). Fly (Jin and Warren, 2003) and mouse (Willemsen
et al., 2003) models support the idea of an RNA gain-
of-function mutation. Consistent with this model is the
observation that two RNA binding proteins, hnRNP A2
and MBNL1, were among the proteins reported to be
present in inclusions isolated from FXTAS brain speci-
mens (Iwahashi et al., 2006). The presence of MBNL1
in FXTAS intranuclear inclusions suggests that similar
mechanisms may underlie the pathogenesis of DM and
FXTAS, although it remains to be determined whether
FXTAS is also associated with altered pre-mRNA
splicing.

Prader Willi Syndrome. Prader Willi syndrome (PWS)
is a rare genetic disorder characterized by intellectual
and behavioral disturbances, including obsessive com-
pulsive disorder and autism, together with obesity and
short stature (Veltman et al., 2005). PWS is associated
with deletions on the paternally inherited copy of chro-
mosome 15q11-13, a maternally imprinted locus harbor-
ing multiple copies of a small non-protein-coding RNA
termed HBII-52 (a small nucleolar RNA, or snoRNA). Re-
cently, Kishore and Stamm (2006) noted complementar-
ity (18 contiguous identical nucleotides) between HBII-
52 snoRNA and an alternative exon (Vb) of the serotonin
receptor 5-HT2cR pre-mRNA. HBII-52 was found to pro-
mote inclusion of exon Vb in transfected cells by binding
a silencer element, thus presumably antagonizing the
activity of a splicing inhibitor. Furthermore, these obser-
vations were correlated with splicing changes in 5-
HT2cR mRNA seen in hippocampal RNA obtained from
PWS patients. These results were taken to suggest
that PWS may arise due to the absence of a trans-acting
RNA which normally functions to regulate 5-HT2cR pre-
mRNA alternative splicing, a hypothesis further corre-
lated with the observation that patient symptoms may
respond to serotonin reuptake inhibitors.

Direct Targeting of RNA Binding Proteins
in Neurologic Diseases

Although numerous reports have described links be-
tween alternative splicing and neurologic disease (Table
1), in many cases the role of alternative splicing in dis-
ease is not well understood. These include diseases in
which targets of the disease are thought to have a role
in the regulation of alternative splicing, as well as neuro-
logic diseases in which aberrant pre-mRNA splicing pat-
terns have been observed. In this emerging area, the
linkages between aberrant splicing and RNA binding
proteins are just beginning to be understood, and the
issue of direct versus indirect effects remains to be
clarified.
Paraneoplastic Neurologic Disorders
An intriguing link between alternative splicing and neu-
rologic disease is emerging from the study of paraneo-
plastic neurologic disorders (PNDs). In these disorders,
malignancies present outside of the nervous system in-
duce expression of what are believed to be neuron-spe-
cific SRFs. This leads to immunologic suppression of
the malignancy, and, in ways that are poorly under-
stood, immunologic breach of the blood-brain barrier
and autoimmune neurologic disease, with dysfunction
in those neurons normally expressing the tumor-
expressed SRF. It has been proposed that PND anti-
body targeting of PND antigens may contribute to the
specific sets of neurologic dysfunction seen in the disor-
ders (Musunuru and Darnell, 2001; Roberts and Darnell,
2004).

Two neuron-specific families of RNA binding proteins
were identified through the study of PNDs. Nova, tar-
geted in patients with dysfunction of inhibitory motor
control, is a neuron-specific protein that regulates alter-
native splicing in a discrete set (approximately several
hundred) of pre-mRNAs encoding a biologically coher-
ent set of synaptic proteins (Jensen et al., 2000; Ule
et al., 2003, 2005). Nova RNA targets correlate with the
specific neurologic defects seen in the PND patients, in-
cluding several necessary for slow inhibitory postsynap-
tic potentials that regulate long-term potentiation
(Huang et al., 2005; Ule and Darnell, 2006). Although
the pathogenesis of the disorder is complex (Musunuru
and Darnell, 2001; Roberts and Darnell, 2004), Nova
knockout mice phenocopy the human PND (Jensen
et al., 2000). A second PND antigen, Hu, is the human ho-
molog of the Drosophila neuronal protein Elav (Szabo
et al., 1991). Although there is no clear data relating Hu
to mammalian neuronal alternative splicing, Elav has
been implicated in the regulation of alternative splicing
of several transcripts in Drosophila (Koushika et al.,
2000; Soller and White, 2003).
Ataxias: a Distinct Disease Subset Associated with

RNA Binding Protein Dysfunction?
Neurologic diseases associated with the mutation or
dysregulation of other factors believed to be necessary
for pre-mRNA splicing regulation have also been de-
scribed. For example, spinocerebellar ataxia subtype 2
(SCA2) results from CAG expansion in the coding region
of the gene encoding the ataxin-2 protein. Ataxin-2 con-
tains two RNA binding modules and interacts with the
known neuronal splicing regulator Fox-1/A2bp1 (Under-
wood et al., 2005), which has also been implicated in iso-
lated cases of epilepsy and mental retardation (Bhalla
et al., 2004). While these observations suggest that the
activity of splicing factors may be altered in SCA2, it is
not known whether splicing is affected in SCA2 patients.

A number of other defects related to RNA regulation
have been observed in patients with ataxic disorders.
For example, triplet repeat expansions have been ob-
served in noncoding RNAs associated with spinocere-
bellar ataxias (SCAs) 8, 10, and 12 (Ranum and Cooper,
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2006). These observations raise the question of how
specific subsets of neurologic symptoms arise in pa-
tients with related mutations. For example, patients
with SCA8 and Huntington’s Disease-Like 2 (HDL2) both
harbor noncoding CUG expansions, as do patients with
DM, but rather than presenting with muscle defects,
they present with signs of either cerebellar ataxia (Koob
et al., 1999) or movement abnormalities, dementia, and
psychiatric problems (Holmes et al., 2001), respectively.
It is not clear whether different phenotypes relate to dif-
ferences in the cell types expressing each of these CUG
repeat-containing genes, or to other causes. Differences
in adjacent sequences, such as CTA tracts adjacent
to the CTG expansion in SCA8, interruptions within
the repeats themselves, antisense transcripts, or other
variables, may contribute to phenotypic differences
(Martins et al., 2005; Moseley et al., 2006; Ranum and
Cooper, 2006).
Neurologic Disorders Targeting Other Nuclear
Proteins

As alternative splicing becomes more closely scruti-
nized in neurologic disease, splicing defects are begin-
ning to be described in disorders where mutations are
present in proteins that were not previously known to
participate in pre-mRNA splicing. For example, in fas-
cioscapulohumeral muscular dystrophy (FSHD), an au-
tosomal dominant neuromuscular disorder, deletion of
a transcriptional silencer leads to overexpression of sev-
eral genes, including FRG1. While there has been little
biochemical analysis of FRG1 function, the protein is
nuclear, copurifies (along with RNA binding proteins
and transcription factors) with spliceosomal complexes
(Rappsilber et al., 2002), and is present in nuclear
speckles (in addition to the nucleolus and Cajal bodies)
in tissue culture cells (van Koningsbruggen et al., 2004).
This localization has also been described for the nuclear
poly(A) binding protein PABPN1 protein (Bao et al.,
2002), which interestingly, accumulates in the nucleus
due to triplet repeat expansions in the neuromuscular
disorder oculopharyngeal muscular dystrophy (Brais
et al., 1998). In Rett syndrome (RTT), a developmental
disorder characterized by motor dysfunction and autis-
tic features, patients harbor mutations in the MeCP2
gene that encodes a DNA methylase believed to affect
transcription, but which is also able to bind to the RNA
binding protein YB1 (Young et al., 2005). The links be-
tween FRG1 and RNA binding led to analysis of alterna-
tive splicing patterns of candidate genes in FSHD and,
more globally, to a genome-wide analysis of alternative
splicing in RTT, leading in both cases to identification of
misspliced transcripts that may play roles in the disor-
ders (Gabellini et al., 2006; Young et al., 2005). Such
splicing defects indicate that the disease-causing pro-
tein may have a previously unsuspected function as
an SRF, or that alternative splicing may by influenced
indirectly by these proteins.

Challenges for the Future

Although significant progress has been made in identify-
ing links between alternative splicing and neurologic
disease, in many cases our comprehension of the signif-
icance of these links and the molecular basis for these
diseases is far from complete. Splicing abnormalities
have been noted in complex polygenic disorders, in-
cluding schizophrenia and other psychiatric disorders
(Black and Grabowski, 2003; Clinton et al., 2003). How-
ever, the causes of these splicing defects and their
contributions to disease pathogenesis have not been
determined.

More generally, there remains a large body of neuro-
logic disorders without a known pathophysiology. Given
that alternative splicing contributes to the regulation of
virtually all aspects of biology, from transcription and
translation to neuronal excitation and inhibition, at the
current time virtually every aspect of neurologic disease
could be considered as having a potential component of
alternative splicing-mediated pathophysiology. In order
for splicing to be able to be linked to disease pathophys-
iology, it will first be necessary to identify candidate al-
ternate exons that are correlated with disease, a process
that will be greatly aided by the development of high
throughput technologies such as splicing arrays. Sec-
ond, it will be necessary to generate animal models in
which such splicing changes recapitulate a disease pro-
cess. For a complete pathophysiologic understanding
of such correlations, it will be necessary to understand
the function of proteins at the exonic level and correlate
splicing changes with physiologic changes.

The application of genetic, bioinformatic, and bio-
chemical approaches should continue to enhance our
understanding of the role of alternative splicing in neuro-
biology and neurologic disease. For example, a recent
study employing an unbiased screen to define the
‘‘ataxia-ome,’’ a protein-protein interaction network of
proteins that are involved in human cerebellar ataxias,
found that many ataxia-causing proteins interact di-
rectly or indirectly with one another and with a common
set of proteins, consistent with the fact that many neuro-
degenerative disorders share similar phenotypes (Lim
et al., 2006). Remarkably, proteins involved in RNA bind-
ing and splicing (including Fox-1/A2bp1) were found to
interact with many ataxia-causing proteins, suggesting
that alternative splicing defects may contribute to the
pathogenicity of various ataxias. Additional support for
this model comes from studies demonstrating that alter-
native splicing factors can function as modifiers of dis-
ease severity (Nissim-Rafinia and Kerem, 2005). Similar
attempts to identify proteins that interact with splicing
factors, as well as their downstream pre-mRNA targets,
will better enable us to understand and perhaps predict
the functional consequences of compromising these
factors in disease.

Together, these efforts will provide the foundation for
the development of therapeutic strategies aimed at cor-
recting splicing defects that are present in human dis-
eases in an attempt to improve human health. Exciting
steps have been taken in recent years toward the devel-
opment of therapeutic strategies to correct the aberrant
splicing programs that underlie disease. In contrast to
conventional gene therapy approaches involving the in-
troduction and expression of large genomic or cDNA
fragments, many efforts have focused on the targeting
and repair of endogenous pre-mRNA to allow the gener-
ation of a preferred spliced isoform. One scheme in-
volves trans-splicing of an endogenous pre-mRNA to
an exogenous transcript in order to create a chimeric
molecule. Two different trans-splicing methods have
been developed which differ primarily in the mechanism
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by which the two disparate RNAs are ligated together.
One approach requires the activity of the spliceosome
to join the two RNAs, whereas the other requires the ac-
tivity of a ribozyme that is encoded within the exoge-
nous RNA itself (Puttaraju et al., 1999; Sullenger and
Cech, 1994). A second strategy to repair aberrant splic-
ing patterns is through the introduction of chimeric mol-
ecules consisting of an RNA complimentary to a specific
pre-mRNA sequence and a second domain that can ei-
ther directly affect pre-mRNA splicing or recruit endog-
enous factors that can do so (Cartegni and Krainer,
2003; Skordis et al., 2003). Although it remains to be de-
termined whether these approaches will provide a useful
therapeutic tool to combat neurologic disease in hu-
mans, considerable progress has been made in demon-
strating that efforts to reprogram pre-mRNA splicing
patterns in cell-culture systems and mouse models of
disease can succeed.
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